MATH 2053 – P01 Discrete Mathematics

<table>
<thead>
<tr>
<th>Department of</th>
<th>Mathematics</th>
<th>College of</th>
<th>Arts and Sciences</th>
</tr>
</thead>
</table>

Instructor Name: Evelyn Thornton, Ph. D.
Office Location: WR Banks 302J
Office Phone: 936-261-2095
Fax: 936-261-2088
Email Address: eethronton@pvamu.edu
Snail Mail (U.S. Postal Service) Address:
Prairie View A&M University
P.O. Box 519
Mail Stop 2225
Prairie View, TX 77446
Office Hours: TBD
Virtual Office Hours:
Course Location: Wool 103
Class Meeting Days & Times: MW 12:30 – 1:20pm
Course Abbreviation and Number: Math 2053
Catalog Description: (3 Credit) This is a course designed to bridge the gap between computational and theoretical mathematics. Topics include functions, combinatorics, and elements of set theory, fundamental logic, proofs (induction, Recursions,) and algorithms.
Prerequisites: A grade of C or better in Math 1124 or equivalent
Co-requisites: NA
Required Text: DISCRETE MATHEMATICS with Graph Theory, Third Edition; By Edgar G. Goodaire & Michael Parmenter ISBN:0-13-167995-3
Access to Learning Resources: PVAMU Library:
phone: (936) 261-1500;
web: http://www.tamu.edu/pvamu/library/
University Bookstore:
phone: (936) 261-1990;
web: https://www.bkstr.com/Home/10001-10734-1?demoKey=d
Course Goals or Overview: The goal of this course is to provide basic knowledge of fundamental concepts of Mathematical logic and Discrete computational methods
COURSE GOALS:

<table>
<thead>
<tr>
<th>Alignment with Academic Program</th>
<th>Alignment with Core Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of this course,</td>
<td></td>
</tr>
</tbody>
</table>
| 1 Understand the fundamentals of mathematical logic that computer science and Math majors need to grasp the background of computer logic and artificial intelligence. | #2
#2, #3 |
| 2 use tools of mathematical logic to solve more and more complex problems by learning machine instruction from prime use of flow charts to the writing of complete algorithms for execution by the computer. | #3
#2, #3 |
| 3 have acquired elements of combinatorics and graph theory to highlight the role mathematics in the development of machine logic, artificial intelligence. | #1
#2 |

Course Evaluation Methods
This course will utilize the following instruments to determine student grades and proficiency of the learning outcomes for the course.

Exams – written tests designed to measure knowledge of presented course material

Exercises – written assignments designed to supplement and reinforce course material

Projects – web development assignments designed to measure ability to apply presented course material

Class Participation – daily attendance and participation in class discussions

Grading Matrix

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Value (points or percentages)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10 assignments at 10 points each</td>
<td>100</td>
</tr>
<tr>
<td>Quizzes</td>
<td>5 quizzes at 20 points each</td>
<td>100</td>
</tr>
<tr>
<td>Tests</td>
<td>4 projects at 25 points each</td>
<td>100</td>
</tr>
<tr>
<td>Mid Term Exam</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Class Participation/ Discussion</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Final Exam</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

Grade Determination:

- A = 400 – 350pts;
- B = 349 – 300pts;
- C = 299 – 250pts;
- D = 249 – 200pts;
- F = 199pts or below

Course Outline

Chapter 0. Mathematical Logics

0.1 Compound statements: And/or, implication

0.2 Proof in Mathematics: direct, by contrapositive and by contradiction

Chapter 1. Logic

1.1 The Truth tables: implication, conjunction, disjunction and negation

1.2 The Algebra of propositions: De Morgan’s Laws

1.3 Logical arguments and review

Chapter 2. Sets and relations

2.1 Sets

2.2 Operations on sets

2.3 Binary Relations

2.4 Equivalence Relations

2.5 Partial orders

Chapter 3. Functions

3.1 Basic terminology

3.2 Inverses and Composition.

3.3 One-to-one correspondence and the Cardinality of a set.

Chapter 4. The Integers

4.1 The division Algorithm

4.2 Divisibility and Euclidean Algorithm

4.3 The prime numbers

4.4 Congruence

4.5 Application of Congruence: Chinese Remainder Theorem/ Cryptography

Chapter 5. Induction and Recursion

5.1 Mathematical Induction

5.2 Recursively defined sequences

5.3 Recurrence relations: The characteristic polynomial

5.4 Recurrence relations: Generating functions
Tentative Instructional Outline:

<table>
<thead>
<tr>
<th>Week #</th>
<th>Dates</th>
<th>Activities and Assignment</th>
<th>Objectives and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1 – 0.2</td>
<td>Pg. 1 - 18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2 – 1.2</td>
<td>Pg. 19 - 30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.3 – 2.1</td>
<td>Pg. 30 - 43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.2 – 2.3</td>
<td>Pg. 43 – 57</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.4 – 2.5</td>
<td>Pg. 57 – 71</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.1 – 3.2</td>
<td>Pg. 72 – 87</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.3 – Rev.</td>
<td>Pg. 87 - 97</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.1 – 4.2</td>
<td>Pg. 97 - 114</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.3 –</td>
<td>Pg. 114 - 125</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.4</td>
<td>Pg. 125 - 135</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.5 Rev.</td>
<td>Pg. 135 - 146</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.1 – 5.2</td>
<td>Pg. 147 – 170</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.3 – 5.4</td>
<td>Pg. 170 - 183</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Final Week</td>
<td>Final week</td>
<td></td>
</tr>
</tbody>
</table>

Course Procedures
Submission of Assignments:
Current homework assignments and computer lab projects will be collected. No late homework or project will be accepted.

Study Hints:
1. Attend class regularly.
2. You should read the material from the textbook before coming to class. The accompanying assignment sheet shows the class schedule and the corresponding text material for each class meeting. If you miss a class, you are expected to find out which material was covered and to familiarize yourself with it. Please ask questions if you have any.
3. Form study groups with classmates.
4. Make use of office hours.
5. Make use of the Math Tutorial Lab in WR Banks, Room 317.

Formatting Documents:
Microsoft Word is the standard word processing tool used at PVAMU. If you’re using other word processors, be sure to use the “save as” tool and save the document in either the Microsoft Word, Rich-Text, or plain text format.

Exam Policy
Exams should be taken as scheduled. No makeup examinations will be allowed except under documented emergencies (See Student Handbook).
University Rules and Procedures

Disability statement (See Student Handbook):
Students with disabilities, including learning disabilities, who wish to request accommodations in class should register with the Services for Students with Disabilities (SSD) early in the semester so that appropriate arrangements may be made. In accordance with federal laws, a student requesting special accommodations must provide documentation of their disability to the SSD coordinator.

Academic misconduct (See Student Handbook):
You are expected to practice academic honesty in every aspect of this course and all other courses. Make sure you are familiar with your Student Handbook, especially the section on academic misconduct. Students who engage in academic misconduct are subject to university disciplinary procedures.

Forms of academic dishonesty:
1. Cheating: deception in which a student misrepresents that he/she has mastered information on an academic exercise that he/she has not mastered; giving or receiving aid unauthorized by the instructor on assignments or examinations.
2. Academic misconduct: tampering with grades or taking part in obtaining or distributing any part of a scheduled test.
3. Fabrication: use of invented information or falsified research.
4. Plagiarism: unacknowledged quotation and/or paraphrase of someone else’s words, ideas, or data as one’s own in work submitted for credit. Failure to identify information or essays from the Internet and submitting them as one’s own work also constitutes plagiarism.

Nonacademic misconduct (See Student Handbook)
The university respects the rights of instructors to teach and students to learn. Maintenance of these rights requires campus conditions that do not impede their exercise. Campus behavior that interferes with either (1) the instructor’s ability to conduct the class, (2) the inability of other students to profit from the instructional program, or (3) campus behavior that interferes with the rights of others will not be tolerated. An individual engaging in such disruptive behavior may be subject to disciplinary action. Such incidents will be adjudicated by the Dean of Students under nonacademic procedures.

Sexual misconduct (See Student Handbook):
Sexual harassment of students and employers at Prairie View A&M University is unacceptable and will not be tolerated. Any member of the university community violating this policy will be subject to disciplinary action.

Attendance Policy:
Prairie View A&M University requires regular class attendance. Excessive absences will result in lowered grades. Excessive absenteeism, whether excused or unexcused, may result in a student’s course grade being reduced or in assignment of a grade of “F”. Absences are accumulated beginning with the first day of class.

Student Academic Appeals Process
Authority and responsibility for assigning grades to students rests with the faculty. However, in those instances where students believe that miscommunication, errors, or unfairness of any kind may have adversely affected the instructor's assessment of their academic performance, the student has a right to appeal by the procedure listed in the Undergraduate Catalog and by doing so within thirty days of receiving the grade or experiencing any other problematic academic event that prompted the complaint.

Technical Considerations for Online and Web-Assist Courses

Minimum Hardware and Software Requirements:
- Pentium with Windows XP or PowerMac with OS 9
- 56K modem or network access
-Internet provider with SLIP or PPP
-8X or greater CD-ROM
-64MB RAM
-Hard drive with 40MB available space
-15" monitor, 800x600, color or 16 bit
-Sound card w/speakers
-Microphone and recording software
-Keyboard & mouse
-Netscape Communicator ver. 4.61 or Microsoft Internet Explorer ver. 5.0 /plug-ins
-Participants should have a basic proficiency of the following computer skills:
 · Sending and receiving email
 · A working knowledge of the Internet
 · Proficiency in Microsoft Word
 · Proficiency in the Acrobat PDF Reader
 · Basic knowledge of Windows or Mac O.S.

Netiquette (online etiquette): students are expected to participate in all discussions and virtual classroom chats when directed to do so. Students are to be respectful and courteous to others in the discussions. Foul or abusive language will not be tolerated. When referring to information from books, websites or articles, please use APA standards to reference sources.

Technical Support: Students should call the Prairie View A&M University Helpdesk at 936-261-2525 for technical issues with accessing your online course. The helpdesk is available 24 hours a day/7 days a week. For other technical questions regarding your online course, call the Office of Distance Learning at 936-261-3290 or 936-261-3282

Communication Expectations and Standards:
All emails or discussion postings will receive a response from the instructor within 48 hours.

You can send email anytime that is convenient to you, but I check my email messages continuously during the day throughout the work-week (Monday through Friday). I will respond to email messages during the work-week by the close of business (5:00 pm) on the day following my receipt of them. Emails that I receive on Friday will be responded to by the close of business on the following Monday.

Submission of Assignments:
Assignments, Papers, Exercises, and Projects will distributed and submitted through your online course. Directions for accessing your online course will be provided. Additional assistance can be obtained from the Office of Distance Learning.

Discussion Requirement:
Because this is an online course, there will be no required face to face meetings on campus. However, we will participate in conversations about the readings, lectures, materials, and other aspects of the course in a true seminar fashion. We will accomplish this by use of the discussion board.

Students are required to log-on to the course website often to participate in discussion. It is strongly advised that you check the discussion area daily to keep abreast of discussions. When a topic is posted, everyone is required to participate. The exact use of discussion will be determined by the instructor.

It is strongly suggested that students type their discussion postings in a word processing application and save it to their PC or a removable drive before posting to the discussion board. This is important for two reasons: 1) If for some reason your discussion responses are lost in your online course, you will have another copy; 2) Grammatical errors can be greatly minimized by the use of the spell-and-grammar check functions in word processing applications. Once the post(s) have been typed and corrected in the word processing application, it should be copied and pasted to the discussion board.

College of Arts and Sciences Student & Staff Aspiration Statement

The faculty and staff of the College of Arts and Sciences at PVAMU are committed to providing the best possible quality education to its students. To that end, we will work hard to prepare the students for success by setting the proper academic environment and background necessary to facilitate learning. In order for us to be successful,
there are some basic expectations our students must demonstrate. These expectations are a simple ingredient to foster camaraderie and 'esprit de corps' in every class and classroom on campus. Additionally, these are lifelong fundamental learning skills to better prepare students for success in America’s job market.

CAS student expectations:

- You are expected to come to class prepared and on time.
- Higher education is an investment in your future, to that end; you must endeavor to be properly equipped for class. (i.e. School supplies, text, and other supporting materials).
- Resolution of any classroom issues (i.e. Grades, course materials, etc) should begin with the instructor.
- If you must leave early, notify the instructor before the class begins, sit by the door, and exit quietly.
- Be considerate of your fellow classmates; please turn off all phones, pagers and other electronic devices.
- Do not talk to other students during lecture. If you have a question or a comment on the subject being discussed, address it to the instructor directly.
- Walk quietly through the hallways, classes in other rooms may still be in session.
- Please refrain from eating, drinking, sleeping in class, using profanity, and engaging in any form of horseplay in the classroom it is disruptive to your fellow classmates.
- Be respectful, civil, polite and considerate when dealing with your professors as well as your fellow classmates.
- Student attire is based on personal preference and taste. The rule of thumb is simple, if it projects a statement which is offensive to others, then maturity should dictate that it is probably not a good idea to wear to class.
- Enthusiasm is infectious, a smile and positive attitude will go far to motivate and charge your professors and fellow classmates.